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1. INTRODUCTION 

This report treats two important problems in the area of control systems 

design and analysis. The first problem we treat here is the robust stability using 

characteristic polynomial. This problem is treated first in characteristic polynomial 

coefficient space with respect to perturbations in the coefficients of the characteristic 

polynomial, and then for a control system containing perturbed parameters in the 

transfer function description of the plant. In coefficient space, a simple expression is 

first given for the Z2- stability margin for both monic and non-monic cases. Following 

this, a method is extended to reveal much larger stability region. 

This result has been extended to the parameter space so that one can determine 

the stability margin, in terms of ranges of parameter variations, of the closed loop 

system when the nominal stabilizing controller is given. This stability margin can 

be enlarged by a choice of better stabilizing controller. 

The second problem this report describes is the lower order stabilization 

problem. Even though the wide 

range of stabilizing controller design methodologies are available in both the state 

space and the transfer function domains, all of these methods produce unnecessarily 

high order controllers. 

The motivation of the problem is as follows. 

In practice, the stabilization is only one of many requirements to be satisfied. 

Therefore, if the order of a stabilizing controller is excessively high, one can normally 

expect to have a even higher order controller upon the completion of design such as 

inclusion of dynamic response requirements, etc. Therefore, it is reasonable to have 

a lowest possible order stabilizing controller first and then adjust the controller to 
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meet additional requirements. 

In this report, the algorithm of designing a lower order stabilizing controller 

is given. The algorithm is not necessarily produce the minimum order controller, 

however the algorithm is theoretically logical and some simulation results show that 

the algorithm works in general. 

The above two problems have been solved and published. These are found 

in Appendix A and B. Finally, some remarks and on going research are briefly 

discussed. 
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2. PUBLICATIONS SUPPORTED BY T H E  G R A N T  

PUBLICATIONS 

o H. Chapellat, S.P. Bhattacharyya, and L.H. Keel, “ Stability Margin for 

Hurwitz Polynomials,” Proceedings of the 27th IEEE Conference o n  Decision 

and Control, Austin, Texas, December 7 - 9, 1988. 

o L.H. Keel and S.P. Bhattacharyya, “Matrix Equation Approach for Designing 

Lower Order Regulators,” SIAM Journal o n  Matr ix  Analysis and Applications, 

To appear. 
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3. DISCUSSIONS AND DIRECTIONS OF RESEARCH 

The stability margin in the parameter space is in general more practical than 

one in the coefficient space. When parameters enter into coefficients of characteristic 

polynomial linearly, the stability margin is exact. However, when parameters enter 

in nonlinear fashion which is the general facts in practical systems, the margin seems 

to be conservative. 

The results show that the transfer function approach (or polynomial frame- 

work) has some difficulties because in most cases, the state space representation 

gives better description of the dynamic systems in terms of parameters. It is true in 

most cases because the state space description is obtained directly from the dynamic 

equations. 

The next phase of research will be concentrated in developing new idea of robust 

control in the domain of state space. Even though some results of this problem are 

available, they are still primitive and not yet satisfactory. 



APPENDIX A 
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ABSTRACT 

This paper treats the robust stability issue using the characteristic polynomial, 
for two different cases. First in coefficient space with respect to perturbations 
in the coefficients of the characteristic polynomial, and then for a control system 
containing perturbed parameters in the transfer function description of the plant. 
In coefficient space, a simple expression is first given for the Z2-stability margin 
for both the monic and non-monic cases. Following this, a method is extended to 
reveal much larger stability regions. In parameter space we consider all single input 
(multi output) or single output (multi input) systems with a fixed controller and a 
plant described by a set of transfer functions which are ratios of polynomials with 
variable coefficients. The paper gives a procedure to calculate the radius of the 
largest stability ball in the space of these variable parameters. This calculation is 
important as it serves as a stability margin for the control system. The method is 
based on the application of the orthogonal projection theorem in the appropriate 
Euclidean vector space. The formulas that result are quasi closed form expressions 
for the stability margin, are computationally efficient and provide some insight. The 
paper is illustrated by numerical examples. 
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I. INTRODUCTION 

Kharitonov’s theorem was revealed to the control community in 1984 [l]. 
Since then there has been a growing interest in the theory of robust control with 
structured perturbations, [2]-[6]. Soh, Berger and Dabke introduced the largest 
stability hypersphere around a stable polynomial [2], and in [3] Biernacki, Hwang 
and Bhattacharyya extended their idea to the control problem and introduced the 
largest stability hypersphere in parameter space. This last result is applicabie 
whenever the characteristic equation of the closed loop system is a linear or affine 
function of the transfer function subject to perturbation. 

In particular, the latter situation always occurs in single input (multioutput) 
or single output(multiinput) plants, when the parameter vector is chosen to be the 
transfer function coefficients of the plant. These two results, however, suffer from 
the fact that the method given for the calculation of the radius of the stability 
hypersphere is not very satisfactory. In this paper we present new methods for 
this calculation, both in coefficient space and in parameter space, by using the 
orthogonal projection theorem in the appropriate Euclidean vector space. The 
formulas that result are quasi closed form expressions for the radius of the largest 
stability hypersphere. We also present some important simplifications of the scalar 
minimization problem that results. These results constitute a conceptual and 
computational improvement over the stability margin calculations given in [2] and 
[31. 

The paper also considers the problem of computing the I” margin around 
a Hurwitz polynomial and and interesting method is given which is based on 
Kharitonov’s theorem and which greatly simplifies the one given in [l] and then 
[5]. Moreover it is shown by an example that this procedure is very simply extened 
and yields stability regions which are much larger than those provided by the simple 
computation of the I”-margin. The paper is organized as follows. In section 11, we 
present the results concerning the computation of stability margins in coefficient 
space, and in section I11 we introduce the general setting for the control problem 
considered in this paper, and present our result for the calculation of the 12-stability 
margin. 

11. STABILITY MARGINS IN COEFFICIENT SPACE 

In this section we first consider a stable polynomial 6(-) of degree n, and we 
give an expression for the radius, in the space of coefficients, of the largest stability 
hypersphere around the nominal point, both in the non-monic and monic case. 

11.1. l2 stability margin 
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a) The non-monk case: 

Let S(-) be an arbitrary stable polynomial of order n, 

The 1' norm of S(S) is defined by, 

i = O  

Let us now separate S(s) into its odd and even parts: 

S(s) = seven(s) + S"dd(s) 
w - 

even degree terms odd degree terms 

and let us also define Se(w) and So(w) as follows: 

b e @ )  = seven(+) = so - 62w 2 + 64w4 - * - - 

S 0 ( W )  = &Odd ( j w  ) = s1 - (j3w 2 + &w4 - . . . . . . 
.iw> 

Theorem 2.1 

The radius of the largest stability hypersphere around 6(s) is given by: 

where d: .is given by: 
i)  n = 2 p  

d, n 2  = [be (412 [6"(w)I2 
1 + w4 + - - - + w4P + 1 + w4 + . . . + w4(P--1) 

ii) n = 2 p  + 1 

b) The monk case: 
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In this section, we are given a stable monic polynomial 

P ( s )  = Po + PlS + . - * .  * * + pnsn--l + sn, 
and we want to find the radius of the largest stability hypersphere in the affine 
space of minoc polynomials of degree n. We have the following result. 

Theorem 2.2 

The radius of the largest stability hypersphere around P ( s )  is given by 

p(P)  = min(IPo1, inf d 2 I )  
w 2 0  

where 
nl dw = d" W 

computed for 
P(s)  - sn - u2sn-2, 

that is 

i)  n = 2 p  

ii) n = 2p + 1 

we now show how the minimization problem that results from the application of 
formulas (2.2) - (2.5) can be simplified. Consider for example the calculation of 

dmjn = inf dw. 
w>o 

A simple manipulation we show that there is no need to carry out a minimization 
over the finite range [O,m). We will consider the case when n = 2p, but a similar 
derivation holds if n is odd. 

First it is clear that 
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and then we have 

lSO(W)12 = (61 - 63w2 + - * + ( - 1 ) p - 1 6 2 p - 1 w 2 p - 2 ) 2 ,  

which yields: 

and 

So that finally, 

This last expression however is nothing but 

and we can see that 6: has exactly the same structure as d:. Can 6% be considered 

as the ''4" of some other polynomial? The answer is of course yes. Consider 
6' (s)  = s"6(:) ,  which in our case is 

W W 

1 
S ' ( S )  = s%( -) = + s2p-1s + * + 6 O S 2 P ,  

S 

then clearly 
2 6'e(w) = 62, - 62p-2w + - - + ( - l ) p 6 0 w 2 p  
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Thus we see that in fact S: corresponds to d: computed for & ' ( e ) .  Suppose now that 

you have a subroutine D M I N ( 6 )  that takes the vector of coefficients 6 as input and 
returns the minimum of 6: over [0,1]. Then the following algorithm will compute 
dmin by simply calling D M I N  two times. 

w 

1. Set 6 = (60,61,...,6,) . 
2. First call: d l  = D M I N ( 6 ) .  
3. Switch: set 6 = (S,, 
4. Second call: d2 = DMIN(6) .  
5 .  dmin = min(d1, d2) .  

- e ,  SO). 

Incidentally, we already knew that the two polynomials S(s) and 6'(s) = s"6($) 
are stable together (i.e. one is stable if and only if the other one is stable). The 
development above tells us that moreover p(S) = ~(6'). 

It is to be noted that the results of this section were first proved in [4]. Recently 
similar results have been achieved in [8]. We now turn to the problem of finding 
the I"-stability margin. 

11.2 I" stability margin 

We consider here as given a stable nominal polynomial S(.s), as well as a set 
of non-negative numbers ao, cy l ,  - - - ,  a,, and we want to find the largest box of the 
form 

Kharitonov's theorem tells us that the closed box, 

is stable if and only if its four Kharitonov polynomials are stable. Denoting 

and as in (2.1), ' 
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the four Iiharitonov polynomials associated with L?; can ben written as, 

I q s )  = S(S) - pKeVen(s) - p K O d d ( s ) ,  

I q s )  = 6(s) - pKeVen(s) + p I P d d ( s ) ,  

I q s )  = S ( S )  + pKeven(S) - p K " d d ( s ) ,  

$(s) = S(S) + pKeVen(s)  + p K O d d ( s ) .  

(2.10) 

THUS we know that when increasing p, L?; will first contain an unstable polynomial 
or a polynomial of degree < n when one of the four polynomials above becomes of 
degree < n or acquires a j w  root or a root at the origin. 

The case of a root at the origin or the case of a loss in degree is trivially achieved 
for 

p =  - 60  and - 6, , respectively. 
a 0  a n  

(2.11) 

Let us now look at the case of the appearance of a j w  root for w > 0. If we 
consider for example K;(s ) ,  we know that this polynomial has a j w  root if and only 
if 

= 6 y w )  - p I P ( w )  = 0 

Ki"(w) = 6O(w) - pKO(w) = 0. 
{and (2.12) 

This of course is possible if and only if we have 

Se(w)li '"(w) - So(w)Ke(w)  = 0. (2.13) 

THis same polynomial is associated with K,4(s) which has a j w  root if and only if 

K ; e ( U )  = P ( w )  + pKe(w)  = 0 kd Jcp4O(w) = S"(w) + pK" (w)  = 0. 
(2.14) 

Note that this polynomial is a polynomial of degree n - 1 in w2 and therefore we 
just have to find the positive roots of a polynomial of degree n - 1. Once these 
roots are found;we then look at the values (at these points) of the ratios 

6"(w) 6"(w) 
I q w )  K"(w) * 
-- - 
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The minimum positive value of these ratios is denoted p1 and corresponds to K1(s), 
and the negative of the maximum negative value is denoted p4 and corresponds to 
1c4 ( ) . 

Similarly, the polynomial in w2 associated with K 2 ( s )  and K 3 ( s )  is 

6e(w)Ico(w)  + S o ( w ) K e ( w )  = 0. (2.15) 

and p2, p3 are defined in a similar fashion. The maximum centered box is then 
obtained by taking p to be equal to the smallest the six positive numbers 

Once this first box is obtained it is also possible to further extend it, if the 
center is allowed to move, by freezing the coefficients corresponding to the 'closest' 
K'(s )  in the first stage and using the same approach. An example will best explain 
the details of this extension procedure. 

Example : 

Consider the case treated in [7] of the polynomial, 

S(S) = s6 + 14.0s' + 8 0 . 2 5 ~ ~  + 2 5 1 . 2 5 ~ ~  + 5 0 2 . 7 5 ~ ~  + 667.25s + 433.5, 

and the set of parameters, 

 yo = 92.32, CYI = 33.36,  CY^ = 38.28 

Cy3 = 15.075, CY4 = 6.2, CY5 = 1.4, Cy6 = 0.14 

Here we have 
K e ( w )  = 92.32 + 3 8 . 2 8 ~ ~  + 6 . 2 ~ ~  + 0 . 1 4 ~ ~  
K " ( w )  = 33.36 + 1 5 . 0 7 5 ~ ~  + 1 . 4 ~ ~ .  

Letting t = w 2 ,  we have to find the positive roots of the two following polynomials, 

q t )  = Se(t)1P(t) - bO(t)Ke(t) 

= -47138.96 - 12583.65755 - 106.49625t2 + 1400.97375t3 

+ 45.65t4 - 3.36t5. 
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and 
P Z ( t )  = S"(t)K"(t) + S"(t)K"(t) 

= 76062.08 - 7889.79755 - 8483.33625t2 - 455.856254t3 

+ 148.9t4 + 0.56t5. 

It turns out that Pl(t) has two positive roots, 

t i  = 4.020612 and t i  = 28.1620029, 

and P 2 ( t )  also has two positive roots which are 

tf = 2.5415548 and t l  = 9.0241863. 

Based on these roots one computes the following values for the pi's, 

p i  2.9937539, p2 = 1.6229978, 

p3 = 1.4757364, p4 = 1.0001038. 

From this we conclude that the 1" - margin is obtained by putting p = p4 = 
1.0001038 in (2.7) giving, 

Bi = [341.17042,525.82957] x [633.88654,700.61346] 

x [464.46603,541.03397] x [236.17344,266.32656] 

x [74.04936,86.45064] x [12.59986,15.40014] 

x [0.85999,1.14001]. 

We know that the Iiharitonov polynomial K4(s) associated with 23; is 'unstable'. 
However we can still increase 23; in the other direction and thus consider, 

= [So - &opt, 525.825981 x [Si - alp', 700.613461 

x [464.46603,62 + c ~ g p ' ]  x [236.17344,63 + Q ~ P ' ]  

x [S4 - c~qp', 86.450641 x [S, - asp' ,  15.40014] 

x [0.85999, S,j + CY~P']. 

The 3 remaining Kharitonov polynomials associated with Bl,,, can be rewritten as 

I q s )  = 6(s) - p ' K " ( s )  - p ' K O ( s ) ,  

K;/(s) = S(s) - p'K"(s) + p K O ( s ) ,  

Ii-;/(s) = S(S) + p K " ( s )  - p'K"(s). 
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The smallest p' for which K j l ( s )  gets a j w  root is of course the same as the one 
calculated above, that is pi  = 2.9937539. 

For 117;~(s) on the other hand, pi  is simply given by the smallest positive value 
of the ratio S e ( w ) / K e ( w ) ,  at the real roots of, 

q w )  + p K O ( w )  = K4"(w)  

= 700.61346 - 236.17344~~ + 15.40014~~.  

this gives the value, 
pk = 2.3459473. 

Similarly, p i  is given by the smallest positive value of the ration S0(w)/II7"(w), at 
the real roots of, 

he(w) + p K e ( w )  = 1{4e(w) 

= 525.82958 - 464.46603~~ + 8 6 . 4 5 0 6 4 ~ ~  - 0 . 8 5 9 9 9 ~ ~ .  

and this yields the value 
pk = 4.918607463. 

Hence, the value of p' is p' = pk = 2.3459473. This gives rise to the augmented box, 

Z?; = [216.92215,525.82958] x [588.98920,700.61346] 

x [464.46603,592.55286] x [236.1734,286.61515] 

x [65.70513,86.45064] x [10.71568,15.40014] 

x [0.85999,1.32843]. 

Here again we know that the Kharitonov polynomials K 4 ( s )  andK2(s) associated 
with l3; are 'unstable'. However we can still increase l?; by considering, 

Z32pl~ I = [216.92215,525.82958] x [Si - a l p " ,  700.613461 

x [464.46603,592.55286] x [236.17344,63 + agp"] 

x [65.70513,86.45064] x [65 - asp", 15.400141 

x [0.85999,1.32843]. 

The two remaining Kharitonov polynomials are 

K$(S) Y 6(s) - p W ( s )  - p"K"(s) ,  

I $ I ( S )  = S(S) + p K e ( s )  - p" IP(s ) .  
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The value of p'i can be seen to the same as p i  that is 

p' i  = 4.918607463. 

As for p'; it is given by the smallest positive value of the ratio S ( w ) / K " ( w ) ,  at the 
real roots of, 

Se(w) - p ' K e ( W )  = 

216.92215 - 592.55286~~ + 65 .70513~~  - 1 . 3 2 8 4 3 ~ ~ .  

This yields p'i  = 4.287652665, which therefore gives the final answer, 

p'' = $1 = 4.287652665, 

so that we get another increase and a final 

B;,,,, = [216.92215,525.82958] x [524.21391,700.6134] 

x [464.46603,592.55286] x [236.17344,315.88636] 

x [65.70513,86.45064] x [7.99729,15.40014] 

x [0.85999,1.32843], 

for which three of the four associated Kharitonov polynomials, namely K1(s), K 2 ( s )  
and K4(s) are 'unstable'. 

We now look at the control problem and consider the stability margin in 
parameter space. 

111. THE Z2 - STABILITY MARGIN IN PARAMETER SPACE 

In the standard feedback system of Figure 1, suppose that the plant is either 
single input (multioutput) or single output (multiinput). Since the formulation is 
similar for the two cases we restrict our considerations to the single input case. 

c (S) d 
Figure 1: Unity Feedback System 
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Let therefore, 

be the transfer function of the system. The order of the plant is q and 

while 
ny(s)  = n:,qsq + + n$. 

The controller transfer function on the other hand is of order T and is described by 

1 
C ( S )  = d C ( s ) [ W  * * * nC,(s> 1 7 

where 

The characteristic polynomial of the closed loop system is then given by the 
polynomial S( e )  of degree n = q + T 

S(s) = d"(s)dp(s) + n&(s)nL(s)  + - - - + nE(s)nT(s). (3.1) 

In this paper the plant parameter vector is taken to be 

The purpose of this section is to derive a measure of stability (stability margin) for 
plants with perturbed coefficients. This can be done by finding the largest stability 
hypersphere in parameter space. We give here a new method for computing the 
radius of such a sphere. For any 1 and n we denote by PL the vector space 

1 times 

where x designates the Cartesian product and Pn is the vector space of real 
polynomials of degree less than.or equal to n. PA is supplied with the natural 
induced inner product defined as follows: 
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then 
1 i n  

The norm associated with this inner product corresponds to the Euclidean norm. 
As an example, for a plant of order q as defined above, we have 

and 

Here again, the question 
time in parameter space. 
perturb the original plant 

arises of being able to define a stability margin, but this 
This stability margin will then tell us how much we can 

and yet remain stable. The largest stability hypersphere 
~ ~~ 

as it was defined in [3] or [9] is characterized by the following theorem. 

Theorem 3.1 

Let E = [n?(s )  - nP,(s) dp(s)] be a given plant of order q,  and C(s) 
a stabilizing controller of order r described by X = [ nT(s) - - n k ( s )  d"(s)], 
and let n = q + r .  

a) There exists a largest stability hypersphere S(p,p(p)) around E,  which is 

For every plant E' within the sphere, the closed loop characteristic 
polynomial S,(p') is stable and of degree n. 

- At least one plant p" on the sphere itself is such that S , ( p " )  is unstable 
or of degree less than n. 

b) Moreover if p" is any plant on the sphere such that Sx(p") is unstable, then 

characterized by 

the unstable roots of S,(P") can only be pure imaginary or zero. 

The radius p(p) of the largest stability hypersphere around is now given by 
the following result. 
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Theorem 3.2 

Let = [ny(s )  e - .  nP,(s) d p ( s ) ]  be a plant of order q and let C(s) be a 
stabilizing controller of order T determined by 

- s = [ nE(s) * - n L ( s )  d C ( s ) ] .  

The radius of the largest stability hypersphere around E is given by 

p(p) = min( W>O inf dP,, d:, d:), 

where 

+ dc"(w)dp"(w) - W 2 d c o ( W ) d P o ( W ) ,  

m 

A 2  = C ( n y " ( w ) n y ( w )  + n;o (w)n fe (w) )  
i= 1 

+ d""(w)dp"(w) + dco(w)dp"(w), 

and 

2 co 
z2 = (nE"(w)P2(s) - w 121 ( W ) P l ( S ) ,  - * - - , dC"(w)P2(s) - w2dC0(w)P1(s)) 

where PI(-), P2(.) are defined as follows (depending on the plant order q):  

i) q = 21 

2 2  1 21 21 P 2 ' ( s ) = l - w s  +...+(- l ) w  s . 

ii) q = 22 + 1 
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P,(s) = s - w2s3 + - - - + ( -1 ) [w2 'sz" ,  

P2(s) = 1 - w s + * * + (-1)[w2's2'. 2 2  

The proof of this result relies on the application of the projection theorem in 
the Euclidean vector space P?+' and can be found in [9]. We now provide an 
example to show the applicability of this result. 

Examde : 

Consider the following single input, single output plant of order q = 3, 

S G(s)  = - n P ( 4  - - 
dP(s) 1 - s + 4s2 + s3 

-4 stabilizing controller for G(s) is 

n C ( 4  3 
C ( S )  = - - - 

d c ( s )  1 + s  

which is of order T = 1 and the resulting characteristic polynomial is 

S(s) = n c ( s ) n p ( s )  + dc( s )dP(s )  

= 1 + 3s + 3s2 + 5s3 + s4. 

In this case we immediately have 

And for dE2, we compute 

and Pz(s) = 1 - w  2 2  s , P,(s) = s - w  s 
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nce(w)  = 3, nC"(w) = 0, d""(w) = 1, dC"(w)  = 1, 
2 d e ( w )  = 0,  nP" (w)  = 1, dP"(w) = 1 - 4w2, dP"(w) = -1 - w 

and then 
2 4 2 X 1 = S e ( w ) = 1 - 3 w  + w ,  X 2 = S o ( w ) = 3 - 5 w ,  

21 = (3P l (S ) ,  PI(S) ps(s)) 
2 3  = (3s - 3w s , 1 + s - w2s2 - w2s3), 

and 

so that 

2 2  = (3&(S), p 2 ( S )  - W 2 p 1 ( S ) )  

2 2  2 2 2  = ( 3 - 3 w  s , 1 - w  s - w  s +w4s3) ,  

[ [z , ] ]~ = 11 + i iW4 

[[z2]12 = i o  + 1iw4 + w 8 ,  

<< z1,z2 >>= 1 - w2 + w4 - w6 = (1 - w2)(1 + w4) .  

and also 

Finally we get 
2 dP, = 

11(1 - 3w2 + w ~ ) ~  + (10 +w4) (3  - 5 ~ ~ ) ~  - 2(1 - w2)(1  - 3w2)(1 - 3w2 + w4)(3  - 5 ~ ' )  
'(1 +w4)(109 + 2w2 + l ow4)  

And the minimization of this function over [0, +m) yields dL2 N .012678. 

Some More Remarks : As before in the coefficient space, it is possible to carry 
out two similar minimizations on the finite range [0,1] in order to compute 
dLi, = inf,lo dP,. After one minimization, one operates the following permutations. 

1 1 
nf(s),dp(s) are replaced by sqnf(-) and s q d P ( - )  

S 5 

whereas 
1 1 

nC(s), d"(s)  are replaced by s'nC( -), srdC( -). 
S 5 

For example in the case that we-treated above, one just replaces 
nC(s )  = 3 by n'"(s) = 3s, whereas 
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d’ “ (s)  = dC(s)  is unchanged 

and 

nP(s) = s by n”(s) = s2 and 
dP(s) = 1 - s + 4s2 + s3 by d p ( s )  = 1 + 4s - s2 + s3. 

Example 2 :  

The Figure shows the experimental model which was developed by NASA 
Langley Research Center in order to demonstrate slewing flexible structures in a 
single axis while simultaneously suppressing vibration motion by the end of the 
maneuver. The detailed information of the model may be found in [lo]. If we 
consider that the stiffness coefficient E I  and motor viscous drag c are uncertain 
parameters: we can redefine parameters as follows. 

d := ( k , k b / R ,  + c ) N ~  

e := (1.875)2JEII(pl)4 

Now we introduce the zero-th order controller 

Then the. characteristic equation becomes 

S(S) = s4 

+ (0.032394788d + 1.688950471n3 + 21 .95051139~~4)~~  

+ (1.031307514e + 1.688950471~~1 + 21.95051139n2)s2 

+ (0.032585741de + 1.69806062en3)s 

+ 1.69806062enn 

= o  



a 
W 
I- 
W 
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We can simply rewrite the equation to 

S(s) = d (0.032394788~~) -- 
R1 (S)  Qi(s) 

+ a (1.031307514~~ + 1.69806062~~3~ + 1.69806062~~1) 
L / v 

Q z ( s )  

+ de (0.032585741s) -- 
R3(S) Q3(9) 

+ B(4  
= o  

where 
B(s )  = 

s4 + (1.688950471~~3 + 21.95051139~~4)~~ + (1.688950471~~1 + 21.95051139~~2)~~ 
Thus 

S(S) = Ri(s)Qi(s) + Rz(s)Q2(~) + R3(s)Q3(~) + B(s)  
The value of d: is in fact +m since no matter what controller you choose, 

the characteristic polynomial remains of order 4. The same argument can be made 
for d:. As long as the controller keeps the Oth and the highest order coefficients 
of the characteristic equation positive, these two coefficients will not effect the 
stability of the characteristic polynomial. Therefore, dE determines the stability of 
the polynomial. In order to determine d5, we have 

Pl(S) = 0, 

and, 

Then, 
P2(4 = 1, 

A1 = Se(w) 

+ w4 

= 1.6898906162enl - (1.031307514e + 1.688950471~~1 + 21.95051139~~2)~~ 

A2 = SO(U) 

= (0.032585731de 

+ 1.69806062en3) - (0.032394788d + 1.688950471~~~ + 21.95051139~~4)~~ 



C 

19 

21 = (Q ; (W) ,  Q 2 0 ( ~ ) ,  Q3”(4>, 
2 2  = ( Q f ( ~ 1 ,  Q; (W) ,  Q; (w)) .  

Thus, 
21 = (-0.032394788w2, 1.69806062~~3,0.032394788), 

2 2  = (0,1.69806062~~1 - 1.031307514~~,  0). 

[ [ZI] ]~  = ( -0 .032394788~~)~  + (1.698060627~3)~ + (0.032394788)2, 

[[&]I2 = (1.69806062~~1 - 1 . 0 3 1 3 0 7 5 1 4 ~ ~ ) ~ .  

<< 2 1  , 2 2  >>= 1.69806062~~3(1.69806062~~1 - 1.031307514~~).  

Then, we can use dP, formula. The initial stabilizing controller was chosen to 
be 

C(S) = [ 0.0369687 -16.647767 -29.677343 0.4496431 

and it provides 

dc = 7.62351163 

= allowable perturbation of d( A d ) 2  + ( + ( A ( d e ) ) 2  

The obtained robust controller is 

C*(s) = [ 369.73937 113.46374 48.22846 8.2085171 

and it provides 

dpW = 10248.294586 

= allowable perturbation of J(Ad)2 + (Ae)2 + (A(de))2 

This result is expected to be somewhat conservative because the nonlinear term 
de was treated as the separate independent parameter. 
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ABSTRACT 

This paper presents an algorithm for stabilizing a linear multivariable system 

with a controller of fixed dynamic order. This is an output feedback stabilization 

problem. An algorithm attempts to solve this via a sequence of approximate 

pole assignment problems. The approximation is driven by the optimization of 

a performance index consisting of a weighted sum of the condition number of the 

closed loop eigenvectors and the norm of the difference between the computed and 

actual controls. 

The algorithm can be used for generating low order solutions to the regula- 

tor problem. The problem treated here is useful in design problems which involve 

parameter optimization and is also important in practical situations where stabi- 

lization is to be accomplished with a fixed number of available parameters. 
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1. INTRODUCTION 

The regulator or feedback stabilization problem is the basic problem that 

control theory attempts to solve. Many design procedures can only be initiated 

after a nominal stabilizing controller has been found. However, except for very 

special cases, there are no direct procedures available to solve this problem when 

the controller order is fixed. Existing solutions to the regulator problem can only 

generate controllers that are of high enough order that arbitrary pole placement 

becomes possible. This includes the LQG theory [l], observed state feedback [2] 

and arbitrary pole placement approaches [3] [4]. Controllers that are robust with 

respect to unstructured perturbations evidently suffer from the same difficulty of 

high order (see examples given in [5]). We also mention that adaptive control theory 

is notorious for producing high order solutions. 

It is certainly essential in practice, to have low order solutions to the stabi- 

lization problem. This requirement arises because the controller must eventually 

carry out several functions such as tracking, disturbance rejection, desensitization 

against parameter variations, provide good transient response, small steady state 

error, prevent various signals from saturating etc., in addition to the basic task of 

stabilization. Many of these requirements are in conflict with each other in ways 

that cannot be handled analytically and the only recourse left to the designer is 

to iteratively redesign the controller using adhoc methods and graphical displays 

until a satisfactory solution is obtained. This redesign must be carried out in the 

parameter space of the stabilizing controller. If the basic stabilizing controller order 

is unnecessarily high this parameter space is also of high dimension and the subse- 

quent design process can become unwieldy. From this prospective, the high order of 
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controllers produced by “modern” control theory is one of the severest limitations 

of this theory. 

We attempt to alleviate this problem by presenting, in this paper a direct 

algorithm in the state space domain, for designing low order stabilizing controllers. 

This algorithm first attempts to stabilize the closed loop system with a fixed order 

controller. This corresponds to an extended output feedback stabilization problem 

for which no analytical solution is available. We attempt to solve this iteratively. 

At each iteration a state feedback matrix assigning a prescribed set of eigenvalues is 

found and this matrix is approximated by output feedback. This is done successively 

by readjusting the desired closed loop pole locations in the left half of the complex 

plane to minimize a performance index that measures the deviation of the actual 

eigenvalues from the desired ones. A low order solution is found by sequentially 

increasing the controller order until stabilization is achieved. 

The algorithm that is given depends on the parameterization of the state 

feedback pole assignment problem derived in [6]. This is briefly described in the 

next section. In Section 3, the fixed order output feedback stabilization problem is 

formulated as an optimization problem and Section 4 describes how the performance 

index can be decreased by increasing the controller order. Examples are given in 

Section 5 and some of the gradient evaluations of Section 4 are derived in the 

Appendix. 

2. THE SYLVESTER EQUATION FORMULATION 

An algorithm was introduced in [6] for solving the pole assignment problem 
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using state feedback. This algorithm consists of solving for X and the for F 

for given (A ,  B, A)  with an arbitrary choice of G. In (2.1) and (2.2) A, X and A 
are nxn matrices. From a result in [7] the solution X of (2.1) generically has full 

rank if ( A ,  B )  is controllable and ( G , A )  is observable. Let Xi(T) denote the i th  

eigenvalue of T and X(T) the spectrum or eigenvalue set of 2’. It follows that if X 

has full rank the solution F has the property: 

X(A + B F )  = X(A) (2.3) 

The advantage of this algorithm are: 

a) The algebraic variety F ( A )  of matrices F which assign a prescribed set of 

eigenvalues A can be obtained by setting A = X(d) for a fixed A, and letting 

the free parameter G run through the set of all possible real values. 

b) Efficient numerical procedures [8] are available for the solution of Sylvester’s 

equation (2.1). 

Based on this parameterization of F ( A )  algorithms were given [9] and [lo] for 

optimizing the conditioning of the closed loop eigenvectors and [ll] for minimizing 

the norm of the state feedback matrix F.  Here, we extend these results by 

considering measurement rather than state feedback and by treating the problem 

of stabilization rather than arbitrary pole placement. 

3. OUTPUT FEEDBACK CONTROLLERS 
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Consider the linear time invariant plant S cascaded with the pth order feedback 

compensator C. 
S : x = Ax + Bu 

Ym = C X .  

C : X, = Acxc + B,y, 

u = ccx, + Dcy, 
The closed loop system is 

A + B D , C  BC, ( i,) = ( B,C A, 

or 

X P  B P  h-P  

and the transfer function of the p t h  order compensator is 

C(S)  := c,(d - A ~ ) - ~  B,  + D, 
The formula (3.4) shows that any fixed order compensator design problem 

is equivalent to a static output feedback problem. In particular the problem of 

stabilization with a fixed order controller p is equivalent to that of stabilizing 

A, + BpKPCp by choice of KP. The general solution of this problem is unknown. 

The best available special results are those of Brasch and Pearson [3] and Kimura [4] 

which deal respectively with arbitrary eigenvalue assignment and “almost” arbitrary 

eigenvalue assignment. 

Let A denote a symmetric set of n + p  complex numbers (i.e. complex numbers 

occur in complex conjugate pairs) and let 

-P I‘ (A)  := {KP1Kp E B(mSP)x(‘+P),a(Ap + BpKpCp)  E A} (3.6) 



The result of Brasch and Pearson [3] states that if (A ,B ,C)  is controllable 

and observable with controllability index v, and observability index v,, and p 2 

min{v,, v,} then K P ( A )  # 8 for every choice of A. The result of Kimura [4] states 

that if p 2 n - m - T + 1 then a(A, + BpliFpCp) can be made arbitrarily close to 

any set A of n + p symmetric complex numbers. 

The lower bound on the order of a stabilizing controller established by the 

above results is in general too conservative. This stems from the fact that both 

results essentially require arbitrary pole placement. In fact for specific choices of A, 

K P ( A )  will "almost always') be empty unless p the compensator order is high. To 

lower the compensator order we therefore relax the specification of A in (3.6) to a 

simply connected region R c C- and consider the family 

It is reasonable to expect that &(n) will in general be nonempty for values of 

p much less than the lower bounds given by the results of Brasch and Pearson or 

Kimura and numerical examples support this. 

The effective characterization of the family Kp(L?) is an unsolved open problem. 

Our approach to this problem will be to consider the state feedback family 

and determine an F, E Ep(Q) and then find K p  such that [IF, - I-,CPll is small 

in the hope that such a K p  E Kp(R). The advantage of this approach is that the 
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family Z,(R) can be characterized conveniently as shown later. For the remainder 

of this section we drop the subscript p for convenience. 

In general, even if /IF - KCll is small it is not in general true that X(A + B F )  

and X(A+BKC) are close. The latter can be achieved by making the eigenstructure 

of A+BF as orthonormal as possible. Let om,,(T) and o,in(T) denote the largest 

and smallest singular values of T. It is well known [8][12] that the perturbation of 

the eigenvalues of the diagonalisable matrix ( A  + B F )  for changes in the entries is 

small if the condition number k ( X )  := IIX112IIX-'II2 of the eigenvector matrix X 

is small. Let F - KC := T so that A + BKC = A + BF - BT. Then using the 

formula in [12] we have 

IXj(A + BICC) - Xj(A + BF)I I IIBT112k(X) 

which shows that control over the eigenvalue locations of A + BKC can be obtained 

only if both IIF-ICCII and k(X) are kept small. One way of doing this is to minimize 

= Q1 umaz(x) + a2Trace{(F - KC)T(F - KC)} 
u m i n ( X )  

(3.10) 

by letting X(A + B F )  range over the region i-2 c C-. Similarly, by letting 

A + FDC = A + BKDC a dual problem can be formulated as 

(3.11) 

The idea of improving the conditioning of the eigenstructure and of minimizing 

the norm of F - KC was first introduced in Keel and Bhattacharyya [13][14]. Here 
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an improved version of this algorithm is presented. In particular we convert the 

constrained optimization problem to an unconstrained problem and extend the class 

of regions R C C- to more general and useful regions. These details are given next. 

4. STABILIZATION ALGORITHM 

In the Sylvester equation approach described in Section 2, 

.4X - X A  = -BG 

and let X ( j )  c R c C-. Under the assumption X(A) n X(A) = 0 and ( A , B )  

controllable, (G ,  A )  observable, the unique solution X will ‘almost surely’ be non- 

singular by deSouza and Bhattacharyya [7] and then X(A + B F )  = X(A) with 

F = G X - l .  By letting X(A) range over 52 this algorithm generates the family of 

- F(R) ,  by letting G be a free parameter run through all possible values this formula 

generates the family F ( R )  defined in (3.8). 

If is a complex diagonal matrix in (4.1), it is clear that X in (4.1) is the 

corresponding complex eigenvector matrix. However we want to treat these matrices 

as real for computational convenience. The following Lemma 4.5 shows that A can 

be taken as a real matrix without loss of generality. Before we state Lemma 4.3 it 

is necessary to introduce some facts. 

Definition 4.1 
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A real square matrix A is called a pseudo diagonal matrix if it is of the form 

with ai, Pi real. 

Definition 4.2 

A complex square matrix is called normal if A*A = AA*. 

Lemma 4.3 [15] 

A complex square matrix is unitary similar to a diagonal complex matrix if 

and only if it is normal. 

Lemma 4.4 

Any real pseudo diagonal matrix is normal. 

Proof 

Taking the i f h  block from (4.3) such as 

we have 

Thus, each block is normal. Now let 



AA* = Diag( A1A; A2AH A,A*, ) 

A*A = Diag ( A;A1 AGA2 * A*,A, ) 

Since AA* = A*A, the statement is true. 

Lemma 4.5 

Let ( A  + B F ) X  = X j  and ( A  + BF)Y = YA where 

1. A,  B,  2, X and F are real matrices with appropriate dimensions. 

2. 2 is real pseudo diagonal, -4 is complex diagonal, and 

3. X and Y are nonsingular. Then, 

k ( X )  = k(Y) (4.9) 

Proof 

From Lemma 4.1 and 4.2, A is known to be normal and unitary similar to the 

complex diagonal matrix A. Thus 

A = uAu*. (4.10) 

Write 

so that 

and 

Now, 

( A  + B F ) X  = XA = X U A U *  

( A  + B F ) X U  = X U A  

xu=Y. 

yy*  = X U U * X *  = xx* = X X T .  0 

(4.11) 

(4.12) 

(4.13) 

(4.14) 
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From this Lemma, minimizing am,z(X)/amin(X) in (3.10) is equivalent to 

minimizing am,,(Y)/am,,(Y).Therefore we can henceforth take as a real pseudo 

diagonal matrix without loss of generality. In fact the condition numbers of X and Y 

are equal, i.e. k ( X )  = k ( X U )  = k(Y). In order to use a gradient based algorithm 

the closed form expression of the gradient of the performance index (3.10) with 

respect to the variables G, I< and the variable elements of denoted 6; is evaluated. 

The details of this derivation are given in Appendix A. 

Theorem 4.6 

Given the performance index J in (3.10), and constraints (4.1) and (4.2), the 

gradients of J with respect to the independent variables G, IC, and A are as follows: 

(a> 
- d J  = ~ { c Y ~ ( F  - II'C)XvT + B T T  U } 
dG 

where U satisfies 

(4.15) 

(4.16) 
- 2 ~ r s X  -1 ( FT - (KC)T)F 

where v, and u, are right and left singular vectors corresponding to a m a z ( X )  

and o; and u; are for amjn(X),  respectively. 

(b) Let iii denote a variable element of 2: 

d J  aA 
aii j dii; - = -Trace{ U X  -} 

where U satisfies (4.16) 

-- - - 2 4 F  - ICC)CT d J  
dK 

(4.17) 

(4.18) 
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Equations (4.15) - (4.18) are used to devise a gradient algorithm that iterates 

on the free parameters G, K and the entries of A to reduce J .  At each iteration 

of the algorithm we get Ai, Fi and Kj. Since .(A;) C R we have a(A + BFj) C R 

for each i. However a ( A  + B K i C )  may or may not be in 52 for each i, and the 

algorithm is designed to make a(A  + BKiC) close to a(&)  = a ( A  + BFi) after 

some iterations. 

The following structure of the closed loop eigenvalue matrix A ensures stability 

without constraints during the iterations. 

A =  

Note that 6i in the matrix A are the only nonzero parameters and furthermore 

the stability requirement,a(A) c C-, can be automatically satisfied without 

constraints, for all real values of 6;. 

We can also parameterize 2 in such a way that the desired closed loop 

eigenvalue locations are automatically confined to some useful region R as in Figures 

4.1 and 4.2. 

In choosing A, a maximal number of 2x2 blocks are included in the initial choice. 

As the algorithm evolves some of the off diagonal terms may become very small. 

At that point we start to vary the corresponding diagonal terms independently. In 

the damping ration region described in Figire 4.2. 8 is also a free parameter. 
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Marrrinal S t abilitv Region 

For this case we can simply modify the matrix to 

with 6i as the real variable parameters and y is fixed. The eigenvalues of A are all 

to the left of the line Re(s )  = -7. 

Damping Ratio Region 

I 

A =  

Now we discuss what happens when the proposed algorithm fails to find a 

stabilizing controller of order i. In this case, we increase the controller order to 

i + 1. It is then necessary to have a way to select the initial values of Go, .& and 

K O  for the controller of order i + 1 to ensure that the performance index J keeps 

decreasing. The following theorem shows the way to select initial variables so that 

J always decreases with increasing controller order. 

Theorem 4.7 

Let J*  be the optimal performance index with optimal variables G*, j* and 
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(4.19) 

and X* and F* satisfy 

AX* - X*A* = -BG* 

Then for the extended system 

A 0  B O  c o  

the value of its performance index J, is equal to J*  if the set of initial variables are 

G , = ( "  0 X3A; " - )  K e = ( "  0 x3A;x,' (4.21) 

where Ai is an arbitrary pseudo diagonal matrix of a extended matrix 

A 0  
( 0  Ai) 

and 

Proof 

Let the optimal values of J* be obtained by G* and K*,  then the extended 

system becomes 
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if we pick G1 = 0 and G:! = 0, then X1 = 0 and X2 = 0 and X3Ai = G3. Here we 

choose 

(4.23) 

for ~1 2. u2 2. - .  2 cri > 0 with tri 2 g,in(X*) and o1 5 gmaz(X*) .  Such a Xs is 

guaranteed by the choice of G3 = X32i and 

Therefore, 
g m a z ( X * )  - - g m a z ( X e )  

g m i n ( X * )  grnin(Xe)  

Now consider the term [IF - KC[[$.  Since 

x o  

we have 

where 

X , l =  ( X - l  0 2-1) 

(4.24) 

(4.25) 

(4.26) 

(4.27) 



Now 

and let 

then 

Here we choose K 1  = 0 and IC2 = 0. Also we can choose 

K3 = X3A;X;' 

because X3 and Ai are well defined. With such a K we have 
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(4.28) 

(4.29) 

(4.30) 

(4.31) 

(4.32) 

(4.33) 

Therefore, we conclude 

with choices of 

("' "- ) and K e =  O ) (4.35) 
0 X3Ai Ge = 

with X3 as in (4.23). This concludes the proof. 0 

This theorem is useful for finding a low order stabilizing controller because it 

shows how by sequentially increasing the order of the controller, J can be guaranteed 
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to decrease. Since a small enough value of each term of J confines the spectrum of 

,-I + BKC to SI (in accordance with (3.9)) the algorithm eventually stabilizes the 

system by sequentially increasing the order of controllers. 

5.  EXAMPLES 

The algorithm developed in the last section is applied to several examples here. 

The gradient calculations of Theorem 4.7 are used along with the Harwell subroutine 

package. 

Example 1 

The first example is a simplified model of the NASA F-8 Digital Fly-By- 

FVire(DFBW) airplane[l6] and its dynamic equation of lateral directional is as 

follows. 

-2.6 0.25 -38. 0 17. 7. 
d (%) = (-0.075 -0.27 4.4 
dt P 0.078 -0.99 -0.23 0.052 

1.0 0.078 0 0 

The given design specifications [16] are that the closed loop poles must be the left 

of the line s = -0.2 i.e. y = 0.2, and the damping factor is 2 0.7, i.e. q5 = 2 in 

Figure 4.2. total equilibrium velocity Vo = 620ft /s(Mach = 0.6) and equilibrium 

angle For the optimization problem initial values are chosen to be 
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-2.39 f jO.00 
+O.OO f jO.00 
-0.34 f j2.62 

1 1.5 0.5 
Go = (5  1 -0.25 0.5 

-2.39 f jO.00 -9.45 f j3.70 -7.58 f j4.96 
+O.OO f jO.00 -0.34 f j0.29 -0.42 f j0.33 
-0.34 f j2.62 

K O = ( ;  ;) 
After 41 gradient iterations minimizing J in (3.10) the following O t h  order 

Initial 
Optimal 

stabilizing compensator is obtained. 

155.9021 61.3301 94.572 
47.03439 0.06839 46.966 

4.60357 -1.75629 
5.21515 -1.85922 

Ii* = 

Note that the order of pole placement compensators (both Brasch - Pearson and 

Kimura) is 1. The corresponding data is shown in Tables 1.1, 1.2 and Figure 5.1. 

For comparison, the same problem was run without including the condition number 

term in J (i.e. cy1 = 0 in (3.10)). It is seen from the corresponding data, shown in 

Table 1.3, 1.4 and Figure 5.2 that the condition number increases significantly, and 

although stabilization is achieved the closed loop eigenvalues fail to be in 0. 

TABLE 1.1 
Eigenvalues 

(a1 = 1, L Y ~  = 1, 4 = f, C 2 0.7, 7 = -0.1) 

TABLE 1.2 
Objective Function. 
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-2.39 f jO.00 
+O.OO f jO.00 
-0.34 f j2.62 

-2.39 f jO.00 -2.39 f jO.01 -1.44 f j2.54 
+O.OO f jO.00 -2.42 f j0.32 -3.44 f jO.00 
-0.34 f j2.62 -1.15 f jO.00 

TABLE 1.4 
0 b ject ive Function 

Initial 
Optimal 

155.9021 61.3301 94.572 
233089.02 0.01530 233089 

Example 2 

Consider the symmetric vibration model of the standard Draper/RPL satellite 

shown in Figure 5.3. The dynamic equations, taken from [17] are: 

dt 
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B =  

where 

0 0 
-0.04168 0.23623 
10.38611 -25.647 

A =  

‘0 0 0 1 0 0  
0 0 0 0 1 0  
0 0 0 0 0 1  
0 14.8732 32.8086 0 0 0 
0 -146.702 -7476.64 0 0 0 

40 -41.8468 -2699.36 0 0 0 

/ o  o \  

\ 3.725120 -9.16291 

1 0 1 0 0 1 0  
0 0 1 0 0 1  C=( 

From the design specifications in [17], it follows that the closed loop system 

must have poles to the left of s = -0.5. For the minimization of J the initial values 

axe chosen to be 

-0.2 2 
-2 -0.2 

-1 10 
-10 -1 

-0.5 1 
-1 -0.5 

A0 = 

-0.2 2 
-2 -0.2 

-1 10 
-10 -1 

-0.5 1 
-1 -0.5 

1.125 1.5 -0.5 3.5 1.5 2 
Go= ( -1 2.5 1.6 4 0.5 -1 

After 67 iterations, the following O t h  order stabilizing controller is obtained: 

-90.97491 20.62868 
-197.646 5.326668 IC* = 

Note that the order of pole placement compensators (both Brasch - Pearson[3] and 

Kimua[4]) is 3. Tables 2.1, 2.2 and Figure 5.4 display the performance indices and 
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+O.OO f j53.1 
+O.OO f j5.43 
+O.OO f jO.00 
+o.oo f jo.00 

the corresponding eigenvalue locations. For the purpose of comparison, the problem 

+O.OO f j 5 3 . 1  -2.89 f j36.7 -3.58 f j30.7 
+O.OO f j5.43 -2.18 f j0.30 -2.41 f j0.67 
+O.OO f j0.00 -0.88 f j5.82 -1.45 f j6.08 
+o.oo f jo.00 

was also run with the condition number term left out of the performance index (i.e. 

+O.OO f j53.1 
+O.OO f j.5.43 
+O.OO f jO.00 
+o.oo f jo.00 

a1 = 0). In this case the algorithm fails to stabilize the system as shown in Table 

2.3, 2.4 and Figure 5.5. This example illustrates that both terms of the performance 

+O.OO f j53.1 -0.63 f j0.05 +178. f jO.00 
+O.OO f j5.43 -0.66 f j3.41 -2.57 f j6.19 
+O.OO f jO.00 -0.59 f j7.86 +1.61 f jO.00 
+o.oo f jo.00 +0.83 f j1.07 

index need to be considered in the stabilization procedure. 

TABLE 2.1 
Eigenvalues for Example 2 
(CYI = 1,  CY^ = 1, 7 = 0.5) 

TABLE 2.2 
Performance Indices 

Initial 11965506 1 1 45.63520 

TABLE 2.3 
Eigenvalues for Example 2 

(CYO = 0, L Y ~  = 1, = 0.5) 
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TABLE 2.4 
Performance Indices 

Initial 11965915 11965506 I 383859.66 1 490.5633 

6. CONCLUDING REMARKS 

The results given here are algorithmic in nature and can be improved upon by 

developing constructive necessary and sufficient conditions for stabilizability with a 

fixed order controller. This in turn will require effective ways of characterizing 

the Hurwitz region. These problems are difficult and have received very little 

attention in the literature. Finally we mention that the algorithm guarantees neither 

a “global” minimum nor does it always find a stabilizing controller of a prescribed 

order whenever one exists. The existence of stabilizing controllers of a fixed order 

is still our unsolved problem. 
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APPENDIX 

Proof of Theorem 3.4 

(4 

Let 

and 

Note that 

(-4.4) A u m a z ( X )  = U, T AXV, 

A a m i n ( X )  = uTAXvi (A.5)  

where v; and uj are left and right singular vectors corresponding to g m j n  and o, 

and v, are for Qmaz.  Thus, 

Now 

J2 : = Trace{ ( F  - I<C)T(F - KC)} 

= Trace{FTF - (KC)TF - FT(KC) + (KC)T(KC)}  

= Trace(FTF) - 2Tra~e( (h 'C)~F}  + Trace{(I<C)T(KC)} 



and 

A Jz = 2Trace( FTAF)  - 2Trace{ ( KC)TAF} 

= 2Trace{ [FT - (KC>T]AF} 

Now we have 

+ 2a2Trace{(FT - (KC)T)AF}. 

From F = GX-', the gradient of F with respect to G is given directly as 

A F  = AGX-' + GA(X-') 

= AGX-I - G X - ~ A X X - ~  

= A G X - ~  - FAXX-~ 

= (AG - FAX)X-'. 

Substituting (-4.10) into (A.9) we have 

A J  = 2a2Trace{(FT - (ICC)T)AGX-l} 

Using [14] 

and 

- 2a2X-'(FT - (KC)T)F}AX 

n n  

26 

( A S )  

(A.lO) 

(A . l l )  

(A.12) 

(A.13) 
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Substituting (A.13) into the second term of (A . l l )  we have 

A J  : = 2a2Trace{X-'(FT - (I<C)T)AG} 

BAG} 

= 2a2Trace{X-'(FT - ( K C ) T ) A G }  
n n  

= Trace{ [2a2X-'(FT - ( K C ) T )  + BU}]AG 

From (A.12) and (A.13) it follows that U is the unique solution of 

Therefore 

- 2{az(F - 1 q x - T  + B T U T }  a J  
dG 
-- 

(A.14) 

(A.15) 

(A.16) 

where U satisfies 

A U - U A =  

(b) 

Now we evaluate the gradients of (3.10) with respect to the variable elements 

of A. Recall the equation (A.9) 
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(A.18) 
+ 2cv2Trace{(FT - (KC)T)AF}. 

From F = GS-', we compute( G is fixed) 

A F  = -GX-'AXX-' 
(A.19) 

= -FAXX-l. 

Substituting A F  into (A.18) 

A J  = Trace 

(A.20) 

Since 

(A.21) AAX - AXA = XAA 
n n  

AX = C y i j ~ ' - l ( - x a A ) A j - l  

Substituting (A.22) into (A.20) 

n n  

U 

It is clear that U is the unique solution of 

(A.22) 

(A.23) 

AU - UA = Xf 
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as in (A.14). 

A J = -Trace{ UXAd} (A.24) 

Therefore, 
d J  32 
- d6 j = -Trace{UX-} d6i (A.25) 

-4s an example the following calculation is considered. Let 

or 

(A.29) q u l l x l l  + u12x21) 

62(u21x12 + u22x22) 

(4 
Finally the gradient of J with respect to I{ is easily derived. 

A J  = -2a2Trace{CFTAK - C(I{C)TAI{} 
(A.30) 

= -2a2Trace{(CFT - C(I<C)T)AIC} 

Thus, 

-- - -2a2[F - KC]CT d J  
dK 

(A.31) 
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